On the Gini coefficient, Cohen's kappa, weighted kappa, ICCs and the SB formula

Matthijs J Warrens

November 6, 2017

Matthijs J Warrens Gini/Cohen's kappa/weighted kappa/ICCs/SB formula

Outline

Four topics

- Negative bias of the Gini coefficient when data are grouped
- Cohen's kappa can always be increased and decreased by combining categories
- Pearson correlation is a special case of weighted kappa
- Transforming ICCs with the SB formula

Introduction Definition Negative bias A theorem

Gini coefficient

Measure of statistical dispersion (Gini 1912)

- inequality of income, wealth or opportunity
- widely used in economics (sociology, health science)
- range [0,1], 0 = uniform distribution (equality)

World Gini coefficient (income)

1988	.80
1993	.76
1998	.74
2003	.72
2008	.70
2013	.65

Introduction Definition Negative bias A theorem

Country Gini coefficients (income)

World Bank (2014) Source: Wikipedia

Introduction Definition Negative bias A theorem

Relative mean difference

Gini coefficient of real numbers x_1, x_2, \ldots, x_n

$$G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j|}{2n \sum_{i=1}^{n} x_i}$$

Examples

$$G = .17$$
 for $x = \{1, 1, 2, 2\}$
 $G = .00$ for $x = \{2, 2, 2\}$

Introduction Definition Negative bias A theorem

Negative bias

Gini coefficient usually not calculated on microdata

- microdata combined into households
- other grouped data with 5 to 30 categories
- income or tax statistics are grouped for confidentiality reasons

Literature: smaller Gini-values observed when data are grouped

Interpretation Gini coefficient, take into account

- type of households
- demographic structure of a country or region

Introduction Definition Negative bias A theorem

Grouped data

Income USA 2010 (G = .47)

income category	% of pop.
under 15,000	13.7%
15,000-24,999	12.0%
25,000-34,999	10.9%
35,000-49,999	13.9%
50,000-74,999	17.7%
75,000-99,999	11.4%
100,000-149,999	12.1%
150,000-199,999	4.5%
200,000 and over	3.9%

Gini coefficient does not always decrease when data are grouped

$$x = \{1, 1, 2, 2\}$$

 $G = .17$

$$x' = \{2, 2, 2\}$$

 $G = .00$

$$x' = \{1, 1, 4\}$$

 $G = .33$

Introduction Definition Negative bias A theorem

A theorem

- Theoretical gap
 - specific grouping conditions for downward bias have not been formulated
- A theorem
 - G strictly decreases if values are partitioned into equal sized groups
 - values may be 0 or negative (Warrens 2018)

Limitation

• groups must have equal size

Gini coefficient	Introduction
Cohen's kappa	Definition
Weighted kappa	Negative bia
Intraclass correlations	A theorem

Example

Ind	ividuals	Small ho	ouseholds	Large h	ouseholds
No.	Income	No.	Income	No.	Income
1	12,000	1 - 2	33,000	1 - 6	121,000
2	21,000				
3	35,000	3 - 4	53,000		
4	18,000				
5	24,000	5 - 6	35,000		
6	11,000				
7	47,000	7 - 8	70,000	7 - 12	260,000
8	23,000				
9	57,000	9 - 10	100,000		
10	43,000				
11	39,000	11 - 12	90,000		
12	51,000				
G	0.27		0.23		0.18

Introduction Definition Combining categories A theorem

Cohen's kappa

Coefficient of agreement (Cohen 1960)

- agreement between two nominal classifications
- quality of ratings and rating instrument
- widely used in social and behavioral sciences, medical sciences
- 1 = perfect agreement, 0 if classifications independent

Examples

- Personality type
- Personality disorder (Schizotypal, Depression, ...)

Introduction Definition Combining categories A theorem

Two nominal classifications

Objects	Rater 1	Rater 2
1	А	А
2	В	А
3	А	В
4	С	С
5	С	А
6	В	В
:	÷	÷

Ratings done independently 3 categories

- nominal
- defined in advance

Summarize data in table

R1/R2	А	В	С	total
А	p_{11}	p_{12}	p_{13}	p_{1+}
В	p_{21}	<i>p</i> ₂₂	<i>p</i> ₂₃	p_{2+}
С	p_{31}	<i>p</i> ₃₂	<i>p</i> ₃₃	p_{3+}
total	p_{+1}	p_{+2}	<i>p</i> ₊₃	1

Definition **Combining categories**

Definition

R1/R2 С В total А Cohen (1960) А .10 .05 .15 В .25 .20 .45 $\kappa := rac{\sum\limits_{i=1}^m \left(p_{ii} - p_{i+}p_{+i} ight)}{1 - \sum\limits_{i=1}^m p_{i+}p_{+i}}$ С .20 .20 .40 total .10 .50 .40 $\kappa = .25$

1

Introduction Definition Combining categories A theorem

Combining categories

R1/R2	А	В	С	total
А	.10	.05		.15
В		.25	.20	.45
С		.20	.20	.40
total	.10	.50	.40	1

R1/R2	А	B+C	total
А	.10	.05	.15
B+C		.85	.85
total	.10	.90	1

 $\kappa = .25$

Some confusion between categories B and C

 \rightarrow combine categories B and C

 $\kappa = .77$

Kappa increases from .25 to .77

Introduction Definition Combining categories A theorem

A theorem

Common believe: higher kappa-value when fewer categories

Theorem (existence): kappa can always be increased or decreased by combining categories (Warrens 2010)

Outline of proof (Warrens 2011)

- consider all kappas corresponding to a partition type of the categories
- overall kappa is a weighted average of these kappas
- smallest kappa is smaller than overall kappa
- highest kappa is higher than overall kappa

Introduction Definition Combining categories A theorem

Three partitions

R1/R2	А	В	С	total
А	.10	.05		.15
В		.25	.20	.45
С		.20	.20	.40
total	.10	.50	.40	1

R1/R2	A+B	С	total
A+B	.40	.20	.60
С	.20	.20	.40
total	.60	.40	1

 $\kappa = .25$

R1/R2	А	B+C	total
А	.10	.05	.15
B+C		.85	.85
total	.10	.90	1
$\kappa = .77$			

 $\kappa = .17$

R1/R2	A+C	В	total
A+C	.30	.20	.50
В	.25	.25	.50
total	.55	.45	1
$\kappa = .10$			

Introduction Definition Combining categories A theorem

Increasing kappa

R1/R2	А	В	С	D	Е	total
A	.02	.01		.01		.04
В	.01	.05	.02	.04	.02	.14
С		.02	.03	.06	.03	.15
D		.04	.05	.20	.13	.43
Е		.01	.02	.09	.12	.24
total	.03	.14	.13	.41	.29	1

Agresti (1990)

$$\begin{array}{ll} \kappa = .18 & \ \ \left\{ A \right\} \left\{ B \right\} \left\{ C \right\} \left\{ D \right\} \left\{ E \right\} \\ \kappa = .26 & \ \ \left\{ A \right\} \left\{ B \right\} \left\{ C \right\} \left\{ D, E \right\} \\ \kappa = .33 & \ \ \left\{ A \right\} \left\{ B \right\} \left\{ C, D, E \right\} \\ \kappa = .41 & \ \ \left\{ A \right\} \left\{ B, C, D, E \right\} \end{array}$$

Introduction Definition Combining categories A theorem

Agresti (1990)

Decreasing kappa

R1/R2	А	В	С	D	Е	total
А	.02	.01		.01		.04
В	.01	.05	.02	.04	.02	.14
С		.02	.03	.06	.03	.15
D		.04	.05	.20	.13	.43
E		.01	.02	.09	.12	.24
total	.03	.14	.13	.41	.29	1

$$\begin{aligned} \kappa &= .18 & \text{ {A} {B} {C} {D} {E} \\ \kappa &= .17 & \text{ {A,C} {B} {D} {E} \\ \kappa &= .16 & \text{ {A,C} {B,D} {E} \\ \kappa &= -.28 & \text{ {A,C,E} {B,D} } \end{aligned}$$

}

Introduction Definition Some more notation A theorem

Weighted kappa

Coefficient of agreement (Cohen 1968)

- agreement between two ordinal classifications
- quality of ratings and rating instrument
- widely used in social and behavioral sciences, medical sciences
- 1 = perfect agreement, 0 if classifications independent

Examples

- Severity of lesions or fractions
- Degree of anxiety
- Degree of disability (severe, moderate, good recovery)

Introduction Definition Some more notation A theorem

Two ordinal classifications

Objects	Rater 1	Rater 2
1	А	А
2	В	А
3	А	В
4	С	С
5	С	А
6	В	В
÷	÷	:

Ratings done independently 3 categories

- ordinal (A<B<C)
- defined in advance

Summarize data in table

R1/R2	А	В	С	total
А	p_{11}	p_{12}	p_{13}	p_{1+}
В	p_{21}	<i>p</i> ₂₂	<i>p</i> ₂₃	p_{2+}
С	<i>p</i> ₃₁	<i>p</i> ₃₂	<i>p</i> ₃₃	p_{3+}
total	p_{+1}	p_{+2}	<i>p</i> ₊₃	1

Introduction Definition Some more notation A theorem

Definition

Cohen (1968)

Weights $w_{jk} \ge 0$

$$\kappa_{oldsymbol{w}} := 1 - rac{\sum\limits_{i=1}^m \sum\limits_{j=1}^m p_{ij} w_{ij}}{\sum\limits_{i=1}^m \sum\limits_{j=1}^m p_{i+} p_{+j} w_{ij}}$$

All weights essentially arbitrary

Identity weights

•
$$w_{ij} = 1_{i
eq j}$$
 (Cohen 1960)

Linear weights

•
$$w_{ij} = |i - j|$$

Quadratic weights

•
$$w_{ij} = (i - j)^2$$

 most widely used Fleiss and Cohen (1973): proportion of variance

Introduction Definition Some more notation A theorem

Some more notation

	Rater 1	Rater 2
Objects	Х	Y
1	<i>x</i> ₁	<i>y</i> ₁
2	<i>x</i> ₂	<i>Y</i> 2
3	<i>X</i> 3	<i>Y</i> 3
4	<i>X</i> 4	<i>Y</i> 4
5	<i>x</i> 5	<i>Y</i> 5
6	<i>x</i> ₆	<i>У</i> 6
÷	÷	÷

Means \bar{x} , \bar{y} Variances s_x^2 , s_y^2 Covariance s_{xy}

$$x_i, y_i \in \{z_1, \ldots, z_m\}$$

 z_i is used for coding category i

Introduction Definition Some more notation A theorem

A theorem

We have

$$\kappa_r := 1 - \frac{\sum_{i=1}^m \sum_{j=1}^m p_{ij} \left(\frac{z_i - \bar{x}}{s_x} - \frac{z_j - \bar{y}}{s_y}\right)^2}{\sum_{i=1}^m \sum_{j=1}^m p_{i+} p_{+j} \left(\frac{z_i - \bar{x}}{s_x} - \frac{z_j - \bar{y}}{s_y}\right)^2} = \frac{s_{xy}}{s_x s_y} = r.$$

Pearson correlation is a special case of weighted kappa

- commonly used in data analysis
- use of correlation is unquestioned

Weighted kappa coefficients are obsolete

Introduction Definitions A discovery A theorem

Intraclass correlations

Measures of reliability

- Shrout and Fleiss (1979), McGraw and Wong (1996)
- assess reliability of quantitative measurements
- widely used in social and behavioral sciences, medical sciences
- range [0,1]

Models

- random raters, or same raters
- absolute agreement, or consistency
- single measurements, average measurements

Introduction Definitions A discovery A theorem

Quantitative measurements

Objects	Rater 1	Rater 2
1	5	4
2	1	3
3	7	3
4	3	4
5	4	5
6	9	8
÷	:	÷

Ratings done independently

• quantitative

Introduction Definitions A discovery A theorem

Definition ICCs

Variance components

• σ_t^2 for objects of measurement (subjects, students, scans) • $\sigma_1^2 + \cdots + \sigma_q^2$ for other sources

General formulas are

$$\mathsf{ICC}(1) = \frac{\sigma_t^2}{\sigma_t^2 + \sigma_1^2 + \dots + \sigma_q^2}$$

for single measurements, and

$$\mathsf{ICC}(k) = \frac{\sigma_t^2}{\sigma_t^2 + (\sigma_1^2 + \dots + \sigma_q^2)/k}$$

for average measurements with k raters.

Introduction Definitions A discovery A theorem

SB formula

Spearman-Brown formula

- from classical test theory
- relates reliability to length of a test

Formula is given by

$$\rho^* = \frac{n\rho}{1+(n-1)\rho}.$$

where

- ρ^* is reliability of extended test
- ρ is reliability of original test
- *n* is ratio length extended test/length original test

Introduction Definitions A discovery A theorem

A discovery

De Vet, Mokkink, Mosmuller and Terwee (2017)

- use SB formula to transform ICC(1) into ICC(k) of same form
- only requires ICC(1)-value
- no knowledge of the variance components needed

De Vet et al. presented examples to support discovery

Discovery is remarkable

• ICCs and SB formula come from quite different disciplines

Example

From single measurements to average measurements

Using
$$\rho = ICC(1) = .166$$
 and $n = 4$ in

$$\rho^* = \frac{n\rho}{1 + (n-1)\rho}$$

yields

 $\rho^* = .443 = ICC(4)$

Gini coefficient	Introduction
Cohen's kappa	Definitions
Weighted kappa	A discovery
Intraclass correlations	A theorem

A theorem

A theorem (Warrens 2017)

- if ICC(m) and ICC(u) have same variance components
- ICC(m) can be transformed into ICC(u)
- using n = m/u and ICC(m) in SB formula

Specifically

- ICC(1) can be transformed into corresponding ICC(k)
- ICC(k) can be transformed into corresponding ICC(1)

Gini coefficient	Introduction
Cohen's kappa	Definitions
Weighted kappa	A discovery
Intraclass correlations	A theorem

Another example

From average measurements to single measurements

Using
$$\rho = ICC(4) = .443$$
 and $n = 1/4$ in

$$\rho^* = \frac{n\rho}{1 + (n-1)\rho}$$

yields

 $\rho^* = .166 = ICC(1)$

Gini coefficient	Introductio
Cohen's kappa	Definitions
Weighted kappa	A discover
Intraclass correlations	A theorem

References

- Cohen J (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20:37-46
- Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin 70:213-220
- De Vet HCW, Mokkink LB, Mosmuller DGM, Terwee CB (2017) Spearman-Brown prophecy and Cronbachs alpha: different faces of reliability and opportunities for new applications. Journal of Clinical Epidemiology 85:45-49
- McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychological Methods 1:30-46
- Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin 86:420-428

Gini coefficient Introduction Cohen's kappa Definitions Weighted kappa A discovery Intraclass correlations A theorem

References 2

- Warrens MJ (2018) On the negative bias of the Gini coefficient due to grouping. Journal of Classification
- Warrens MJ (2010) Cohen's kappa can always be increased and decreased by combining categories. Statistical Methodology 7:673-677.
- Warrens MJ (2011) Cohen's kappa is a weighted average. Statistical Methodology 8:473-484
- Warrens MJ (2014) Corrected Zegers-ten Berge coefficients are special cases of Cohen's weighted kappa. Journal of Classification 31:179-193
- Warrens MJ (2017) Transforming intraclass correlation coefficients with the Spearman-Brown formula. Journal of Clinical Epidemiology 85:14-16