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Abstract

Weighted kappa is a measure that is commonly used for quantifying
similarity between two ordinal variables with identical categories. Addi-
tive kappa is a special case of weighted kappa that allows the researcher
to specify distances between adjacent categories. It is shown that addi-
tive kappa is a weighted average of the additive kappas of all collapsed
tables of a specific size. It follows that, if the reliability of a categorical
rating instrument is assessed with additive kappa, the reliability can be
increased by combining categories.
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1 Introduction

In pattern recognition, classification and data analysis, similarity measures are
used to quantify the strength of a relationship between two variables. Com-
monly used examples are, Pearson’s product-moment correlation for measuring
linear dependence between two numerical variables, the Jaccard coefficient for
measuring co-occurrence of two species types, and the Hubert-Arabie adjusted
Rand index for comparing partitions of two different clustering algorithms. A
commonly used coefficient for measuring similarity between two ordinal vari-
ables with identical categories is the weighted kappa measure [1-4]. Moreover,
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weighted kappa is a standard tool for assessing reliability of categorical rating
instruments and scales in social, behavioral and medical sciences [2,4].

Suppose the data consist of two variables X and Y with identical ordinal
categories A1, A2, . . . , Ac. For example, if the rating scale would measure rigid-
ity of a subject, the category labels could be, Absent, Slight, Moderate, Severe.
The variables contain categorical scores of n subjects. For a population of sub-
jects, let πij denote the proportion classified in category i on X and in category
j on Y , where i, j ∈ {1, 2, . . . , c}. Furthermore, define πi+ :=

∑c
j=1 πij and

π+i :=
∑c

j=1 πji. The marginal probabilities πi+ and π+i reflect how many
subjects are in category Ai of X and Y , respectively.

With ordered categories dissimilarity between the variables on adjacent
categories is usually of greater importance than dissimilarity on categories
that are further apart. Weighted kappa allows the user to specify weights
to describe the closeness between categories. If the weights are distances,
pairs of categories that are further apart are assigned higher weights. Let
wij ≥ 0 for i, j ∈ {1, 2, . . . , c} be non-negative real numbers, with wii = 0.
The weighted observed dissimilarity between the variables is defined as O :=∑c

i=1

∑c
j=1wijπij. Weighted kappa corrects for (dis)similarity due to chance.

The expectation of the weighted dissimilarity under independence is given by
E :=

∑c
i=1

∑c
j=1wijπi+π+j. Cohen’s weighted kappa is then defined as [1-4]

κw := 1− O

E
=

∑c
i=1

∑c
j=1wijπij∑c

i=1

∑c
j=1wijπi+π+j

. (1)

Measure (1) is a function from the set of all square contingency tables to the
interval [1,−1]. Its value is 1 when O = 0 (X = Y ), 0 when O = E, and
negative when O > E. The fraction on the right-hand side of (1) shows that
the value of (1) is invariant under multiplication of the weights wij by a positive
constant.

Let d1, d2, . . . , dc−1 ≥ 0 be distances between the c − 1 pairs of adjacent
categories. The additive weights are defined as

wij = 0 for i = j; wij =

j−1∑
k=i

dk for i < j; wij =
i−1∑
k=j

dk for i > j. (2)

The weight in (2) can be seen as a distance between categories Ai and Aj

on an underlying one-dimensional interval scale. If category A1 is the origin
then the amounts dk for k ∈ {1, 2, . . . , c− 1} indicate the relative locations of
categories A2, A3, . . . , Ac respectively. The weights are called additive weights
since additivity holds between these distances.



Additive kappa can be increased by combining categories 325

Substituting (2) into (1) we obtain additive kappa [3]

κa (d1, . . . , dc−1) = 1−

∑c−1
i=1

∑c
j=i+1

(∑j−1
k=i dk

)
(πij + πji)∑c−1

i=1

∑c
j=i+1

(∑j−1
k=i dk

)
(πi+π+j + πj+π+i)

. (3)

If we have dk = 1 for k ∈ {1, 2, . . . , c− 1} the weights in (2) are identical to the
so-called linear weights [1,4]. A limitation of linear kappa is that the ordered
categories are assumed to be equidistant, which is an unreasonable assumption
for many ordinal variables in real life applications.

2 A weighted average

In reliability studies it is sometimes desirable to combine some of the categories
and shorten the rating scale, for example, when two categories are easily con-
fused [1]. With ordered categories it only makes sense to combine categories
that are adjacent in the ordering. Theorem 2.1 below shows that the overall
additive kappa is a weighted average of additive kappas of all collapsed tables
of a specific size.

If the agreement table has c categories additive kappa requires the speci-
fication of the c − 1 distances d1, d2, . . . , dc−1 for weighting scheme (2). If we
combine categories the collapsed table has less categories and we have to spec-
ify a new set of distances between the categories. We will use the following
rule. If we combine the categories Ak and Ak+1 the distance dk drops from
the weighting scheme. The set of distances for the weighting scheme of the
collapsed (c − 1) × (c − 1) table is then given by d1, . . . , dk−1, dk+1, . . . , dc−1.
If we combine multiple categories at once all distances between the associated
categories are dropped from the weighting scheme.

Suppose the agreement table has c categories and let m ∈ {2, . . . , c− 1} be
fixed. The agreement table of size c× c becomes an m×m table if we combine
c−m pairs of adjacent categories. Since we have c− 1 pairs there are

M(c,m) =

(
c− 1

c−m

)
=

(
c− 1

m− 1

)
(4)

ways to choose c − m from the c − 1 pairs. Thus, the agreement table of
size c × c can be collapsed into M(c,m) distinct tables of size m ×m. With
regard to Theorem 2.1 below let O` and E` for ` ∈ {1, 2, . . . ,M} denote the
observed and expected weighted disagreement of these M(c,m) smaller tables.
Furthermore, define

κ` := 1− O`

E`

for ` ∈ {1, 2, . . . ,M} . (5)
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The κ` denote the additive kappas of the M subtables.
Theorem 2.1 shows that the overall additive kappa κa is a weighted average

of the additive kappas κ` of the subtables. The weights are the denominators
E` of the weighted kappas. Theorem 2.1 generalizes the main results in [1,3].
The proof below consists of new arguments and provides more inside than the
technical proof used in [1].

Theorem 2.1. Consider an agreement table {πij} with c ≥ 3 categories and
consider the M collapsed tables of size m×m. We have

κa =

∑M
`=1E`κ`∑M
`=1E`

. (6)

Proof. Let Oa and Ea denote, respectively, the weighted observed dissimilar-
ity and the expectation of the weighted dissimilarity under independence of
weighted kappa κa. We first derive the identity

M∑
`=1

O` = N(c,m) ·Oa, (7)

where

N(c,m) =

(
c− 2

m− 2

)
. (8)

Consider an arbitrary element πij of {πij}. If i = j we have wii = 0. Therefore,
assume i 6= j. Since κa and the κ` are symmetric, the elements πij and πji
have the same weights. Therefore, assume i < j. The weight of πij in Oa is
the total distance between categories Ai and Aj, given in (2). If we combine
two categories Ak and Ak+1 the distance dk drops from the weighting scheme
and is not used in the calculation of the weights. For an m × m table the
weight of πij is thus smaller than wij. If we consider all M tables of size m×m
each distance dk drops out the weighting scheme the same number of times.
Hence, since we sum over all M tables in (7) it suffices to determine how often
a specific distance dk drops from the weighting scheme.

The number of times a distance dk drops out the weighting scheme of an
m×m table is given by (

c− 2

c−m− 1

)
, (9)

which is the number of ways to choose c−m− 1 distances from the remaining
c− 2 pairs of distances. Since(

c− 2

c−m− 1

)
+

(
c− 2

m− 2

)
=

(
c− 1

m− 1

)
= M(c,m), (10)
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the number of times a distance dk is involved in the calculation of the weights
of an m ×m table is given in (8). Hence, if we sum over all M subtables of
size m×m we obtain the identity in (7).

Next, applying similar arguments to the c × c table {πi+π+j} and the E`,
we obtain the identity

M∑
`=1

E` = N(c,m) · Ea. (11)

Finally, using (7) and (11), together with the identity

E`κ` = E`

(
1− O`

E`

)
= E` −O`, (12)

we have∑M
`=1E`κ`∑M
`=1E`

=

∑M
`=1 (E` −O`)∑M

`=1E`

=
N(c,m) · Ea −N(c,m) ·Oa

N(c,m) · Ea

= κa. (13)

3 Conclusion

Theorem 2.1 shows that the overall additive kappa is a weighted average of
additive kappas of all collapsed tables of a specific size. Theorem 2.1 shows in
particular that the additive kappa of an c×c table is a weighted average of the
additive kappas of all (c− 1)× (c− 1) tables that are obtained by combining
two adjacent categories. If the data do not have a particular structure [5]
then these additive kappas are all distinct. This implies that there in general
exist two categories such that, when combined, additive kappa increases. In
addition, there exist two categories such that, when combined, additive kappa
decreases. Theorem 2.1 thus implies an existence result. Moreover, if we
measure inter-observer reliability in terms of additive kappa, the reliability
can thus be increased by shortening the rating scale.
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