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SOME PARADOXICAL RESULTS FOR THE QUADRATICALLY WEIGHTED KAPPA

MATTHIJS J. WARRENS
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The quadratically weighted kappa is the most commonly used weighted kappa statistic for summa-
rizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically
weighted kappa that are paradoxical. For agreement tables with an odd number of categories n it is shown
that if one of the raters uses the same base rates for categories 1 and n, categories 2 and n − 1, and so
on, then the value of quadratically weighted kappa does not depend on the value of the center cell of the
agreement table. Since the center cell reflects the exact agreement of the two raters on the middle cate-
gory, this result questions the applicability of the quadratically weighted kappa to agreement studies. If
one wants to report a single index of agreement for an ordinal scale, it is recommended that the linearly
weighted kappa instead of the quadratically weighted kappa is used.

Key words: Cohen’s kappa, weighted kappa, nominal agreement, ordinal agreement, agreement studies,
radiology, quadratic weights.

1. Introduction

In biomedical and behavioral science research, analysis of agreement between two observers
or raters often provides a useful means of assessing the reliability of a categorical rating system.
The observers may be clinicians who classify children on asthma severity, pathologists that rate
the severity of lesions from scans, or competing diagnostic devices that classify the extent of
disease in patients into ordinal categories. High agreement between the ratings would indicate
consensus in the diagnosis and interchangeability of the measure devices. Standard tools for as-
sessing agreement between raters are the descriptive statistics Cohen’s (1960) unweighted kappa
for ratings on a nominal scale (Brennan & Prediger, 1981; Zwick, 1988; Hsu & Field, 2003;
Vanbelle & Albert, 2009a; Warrens 2008a, 2008b, 2010a, 2010b, 2010c), denoted by κ ,
and Cohen’s (1968) weighted kappa for ratings on an ordinal scale (Fleiss & Cohen, 1973;
Brenner & Kliebsch, 1996; Warrens 2011a, 2011b, 2012a), denoted by κw . Compared to κ ,
κw allows the assignment of weights to describe the closeness of agreement between categories.
Both statistics correct for agreement due to chance and have been used in numerous agreement
studies. Apart from agreement studies, statistics κ and κw are commonly applied to various cross-
classifications of two categorical variables encountered in psychometrics, educational measure-
ment, epidemiology (Jakobsson & Westergren, 2005) and radiology (Kundel & Polansky, 2003;
Crewson, 2005).

The assignment of weights is generally considered an arbitrary exercise, even when an es-
tablished algorithm is used (Crewson, 2005; Vanbelle & Albert, 2009b). Standard weights are
the so-called linear weights (Cicchetti & Allison, 1971; Vanbelle & Albert, 2009b) and quadratic
weights (Fleiss & Cohen, 1973; Schuster, 2004). Some support for the quadratically weighted
kappa, denoted by κq , was presented in Fleiss and Cohen (1973) and Schuster (2004). These
authors showed that κq may be interpreted as an intraclass correlation coefficient. Furthermore,
support for the use of the linearly weighted kappa, denoted by κ�, was derived in Vanbelle and
Albert (2009b). An agreement table with n ≥ 3 ordered categories can be collapsed into n − 1
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distinct 2 × 2 tables by combining adjacent categories. Vanbelle and Albert (2009b) showed that
the components of κ� can be obtained from these 2 × 2 tables. A consequence is that κ� can
be interpreted as a weighted average of the 2 × 2 kappas, where the weights are the denomina-
tors of the 2 × 2 kappas (Warrens, 2011b). Furthermore, Warrens (2012b) showed that for fixed
u ∈ {2,3, . . . , n−1}, κ� can be interpreted as a weighted average of the linearly weighted kappas
corresponding to all u × u tables that can be obtained by combining adjacent categories.

In this paper we are specifically interested in κq . The quadratically weighted kappa κq is the
version of weighted kappa that is most commonly used in practice (Maclure & Willett, 1987;
Graham & Jackson, 1993). However, several authors have noted that κq has certain peculiar
properties. Brenner and Kliebsch (1996) showed that the κq value tends to increase as the number
of categories increases. Graham and Jackson (1993) noted that κq tends to behave as a measure
of association instead of an agreement coefficient. Furthermore, these authors demonstrated that
κq is not always sensitive to differences in exact agreement and that high values of κq can be
observed even when the level of exact agreement is low.

In this paper we present some properties of the quadratically weighted kappa that can be
interpreted as paradoxical. The results show that for agreement tables with an odd number of
categories, κq is not able to discriminate between tables with very different values of exact agree-
ment. In Section 3 it is shown that under certain restrictions on the base rates (marginal totals)
of one of the raters, the value of κq is insensitive to the value of the center cell of the agreement
table. Since the center cell reflects the exact agreement of the raters on the middle category of
the scale, we would expect that the cell’s value makes an important contribution to the κq value.

The paper is organized as follows. In the next section we introduce Cohen’s unweighted κ

and weighted kappas κ� and κq . In Section 3 we present the main results together with numerical
examples. Section 4 contains a discussion.

2. Weighted Kappa

In this section we define κw and its special cases κq and κ�. Suppose that two raters each
independently distribute the same set of m objects (individuals) among a set of n ≥ 2 ordered
categories that are defined in advance. To measure the agreement among the two raters, a first
step is to obtain a square agreement table F = {fij }, where fij indicates the number of objects
placed in category i by the first rater and in category j by the second rater (i, j ∈ {1,2, . . . , n}).
We assume that the categories of the raters are in their natural order so that the diagonal elements
fii reflect the exact agreement between the two raters. In the following the elements on the main
diagonal will be called the agreements, whereas the off-diagonal elements will be referred to as
the disagreements.

For notational convenience, let A = {aij } be the table of proportions with relative frequencies
aij = fij /m. Row and column totals

pi =
n∑

j=1

aij and qi =
n∑

j=1

aji

are the marginal totals of A. The marginal totals pi and qi are also called the base rates and
they reflect how often the categories were used by Raters 1 and 2, respectively. The sum of the
diagonal elements of A

O =
n∑

i=1

aii = 1

m

n∑

i=1

fii

is the proportion of observed agreement.
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Example 1. As an example of F consider the following agreement table for three categories A,
B and C (together with the corresponding table of proportions A):

Rater 2
Rater 1 A B C Totals

A 5 3 1 9
B 3 0 4 7
C 0 2 7 9

Totals 8 5 12 25

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Rater 2
Rater 1 A B C Totals

A 0.20 0.12 0.04 0.36
B 0.12 0 0.16 0.28
C 0 0.08 0.28 0.36

0.32 0.20 0.48 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

The two raters agree 5 times on category A, 7 times on category C, and never on category B . In
the remainder of the paper we will use

5 3 1 9
3 0 4 7
0 2 7 9

8 5 12 25

O = 0.480
κ = 0.207

κq = 0.579
κ� = 0.407

as a shorter representation of an agreement table. To the right of each agreement table we will
also present the corresponding values of O , κ , κ� and κq .

The weighted kappa coefficient (Cohen, 1968) is defined as

κw = 1 − Ow

Ew

= 1 −
∑n

i=1
∑n

j=1 wijaij∑n
i=1

∑n
j=1 wijpiqj

where

Ow =
n∑

i=1

n∑

j=1

wijaij and Ew =
n∑

i=1

n∑

j=1

wijpiqj

are the observed and expected weighted disagreements, respectively. For the weights wij we
require wij ∈ R≥0 and wii = 0 for i, j ∈ {1,2, . . . , n}. For notational convenience we formulate
κw here in terms of dissimilarity scaling (see Cohen, 1968). With dissimilarity scaling, pairs of
categories that are further apart are assigned higher weights. For the definition of κw in terms of
similarity scaling see, for example, Warrens (2011a, 2011b).

The quadratically weighted kappa (Fleiss & Cohen, 1973) is defined as

κq = 1 − Oq

Eq

= 1 −
∑n

i=1
∑n

j=1(i − j)2aij∑n
i=1

∑n
j=1(i − j)2piqj

where

Oq =
n∑

i=1

n∑

j=1

(i − j)2aij and Eq =
n∑

i=1

n∑

j=1

(i − j)2piqj .

For the data in Example 1 we have Oq = 0.84, Eq = 0.62 and κq = 0.579.
The linearly weighted kappa (Cicchetti & Allison, 1971) is defined as

κ� = 1 − O�

E�

= 1 −
∑n

i=1
∑n

j=1 |i − j |aij∑n
i=1

∑n
j=1 |i − j |piqj
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where

O� =
n∑

i=1

n∑

j=1

|i − j |aij and E� =
n∑

i=1

n∑

j=1

|i − j |piqj .

For the data in Example 1 we have O� = 0.72, E� = 0.528 and κ� = 0.407.
Finally, if we use wii = 0 and wij = 1 for i �= j in κw we obtain Cohen’s (1960) unweighted

kappa

κ = 1 − 1 − ∑n
i=1 aii

1 − ∑n
i=1 piqi

=
∑n

i=1(aii − piqi)

1 − ∑n
i=1 piqi

.

For the data in Example 1 we have

O =
3∑

i=1

aii = 0.20 + 0.28 = 0.48,

3∑

i=1

piqi = (0.36)(0.32) + (0.28)(0.20) + (0.36)(0.48) = 0.344,

and κ = 0.207.

3. Results

In this section we present the results. Theorem 1 shows that if the number of categories n is
odd and one of the raters has the same base rates (marginal totals) for categories 1 and n, 2 and
n − 1, and so on, then the value of κq is not a function of the center cell of the agreement table.

Theorem 1. Suppose that the number of categories n is odd. Let k = (n+1)/2 denote the middle
category. If pi = pn+1−i or qi = qn+1−i for i ∈ {1,2, . . . , k − 1}, then κq does not depend on the
center cell akk .

Proof: We present the proof for pi = pn+1−i . The case qi = qn+1−i follows from using similar
arguments.

First consider the quantity Oq . Since the elements a11, akk and ann have zero weight in Oq ,
the quantity Oq is not a function of akk or 1 − akk . Next, consider the quantity

Eq =
n∑

i=1

n∑

j=1

piqj (i − j)2 =
n∑

i=1

(
pi

n∑

j=1

qj (i − j)2

)
. (1)

We will show that under the conditions of the theorem, (1) is not a function of pk and qk .
Setting pi = pn+1−i in (1) we obtain

k−1∑

i=1

(
pi

n∑

j=1

qj

[
(i − j)2 + (n + 1 − i − j)2]

)
+ pk

n∑

j=1

qj (j − k)2. (2)
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We have

(i − j)2 + (n + 1 − i − j)2

= (i − j)2 + (i + j)2 − 2(i + j)(n + 1) + (n + 1)2

= 2
(
i2 + j2) − 2(i + j)(n + 1) + (n + 1)2

= 2

(
i2 − i(n + 1) + (n + 1)2

4
+ j2 − j (n + 1) + (n + 1)2

4

)

= 2(i − k)2 + 2(j − k)2. (3)

Using identity (3) we can write (2) as

k−1∑

i=1

(
pi

n∑

j=1

qj

[
2(i − k)2 + 2(j − k)2]

)
+ pk

n∑

j=1

qj (j − k)2,

which in turn is equal to

k−1∑

i=1

(
2pi(i − k)2

n∑

j=1

qj + 2pi

n∑

j=1

qj (j − k)2

)
+ pk

n∑

j=1

qj (j − k)2. (4)

Using
∑n

j=1 qj = 1 in (4) we obtain

2
k−1∑

i=1

pi(i − k)2 +
(

2
k−1∑

i=1

pi + pk

)
n∑

j=1

qj (j − k)2. (5)

From
∑n

i=1 pi = 1 and pi = pn+1−i for i ∈ {1,2, . . . , k − 1} it follows that

2
k−1∑

i=1

pi + pk = 1. (6)

Using (6) in (5) we obtain

Eq = 2
k−1∑

i=1

pi(i − k)2 +
n∑

j=1

qj (j − k)2. (7)

Note that (7) is not a function of pk . Furthermore, since qk has weight 0 in the right-hand term
in (7), (7) is also not a function of qk , and therefore not a function of akk or 1 − akk . This
completes the proof. �
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Example 2. To illustrate Theorem 1 we consider the following three 3 × 3 tables:

7 4 1 12
4 0 1 5
1 5 6 12

12 9 8 29

O = 0.448
κ = 0.165

κq = 0.500
κ� = 0.344

7 4 1 12
4 21 1 26
1 5 6 12

12 30 8 50

O = 0.680
κ = 0.459

κq = 0.500
κ� = 0.477

7 4 1 12
4 71 1 76
1 5 6 12

12 80 8 100

O = 0.840
κ = 0.565

κq = 0.500
κ� = 0.541

Note that the three tables only differ in the center cell a22. Since for all three tables the first
and third row totals are equal, Theorem 1 applies. Furthermore, since the number of agreements
on the middle category is substantially larger in the second table and even more in the third
table, we expect a higher value of κq for the latter tables. However, κq = 0.5 in all three cases.
The values are identical because, for these tables, κq does not depend on the value of the center
cell (Theorem 1). In contrast, the values of κ� (0.344, 0.477 and 0.541) do reflect the expected
increase in agreement.

Example 3. As a second illustration of Theorem 1 we consider the following two 5 × 5 tables:

1 2 0 0 0 3
1 4 1 0 0 6
0 5 0 7 0 12
0 0 0 5 1 6
0 0 0 1 2 3

2 11 1 13 3 30

O = 0.400
κ = 0.259

κq = 0.775
κ� = 0.545

1 2 0 0 0 3
1 4 1 0 0 6
0 5 10 7 0 22
0 0 0 5 1 6
0 0 0 1 2 3

2 11 11 13 3 40

O = 0.550
κ = 0.399

κq = 0.775
κ� = 0.593

Note that the two tables only differ in the center cell a33. Since for both tables the first and fifth
row totals are equal, and the second and fourth row totals are also equal, Theorem 1 applies.
Furthermore, since the number of agreements on the middle category is larger in the second table
we expect a higher value of κq for the second table. However, κq = 0.775 for both tables. In
contrast, the values of κ� (0.545 and 0.593) do reflect the expected difference in agreement.

Theorem 2 shows that if the first row of an agreement table is equal to the nth row, the
second row equal to the (n − 1)th, and so on, then κq = 0. If the number of categories is odd,
this property implies that κq is insensitive to all values on the middle row of the agreement table.
Since κq treats the rows and columns symmetrically, a similar property holds for the columns as
well.

Theorem 2. Suppose that either aij = an+1−i,j or aji = aj,n+1−i for i ∈ {1,2, . . . , (n − 1)/2}
if n is odd, or i ∈ {1,2, . . . , n/2} if n is even. Then κq = 0.

Proof: We give the proof for n is odd. The proof for n is even follows from using similar
arguments.

Let k = (n + 1)/2 denote the middle category. Furthermore, note that Theorem 1 applies
here. We will show that under the conditions of the theorem, Oq is equal to Eq in (7).

Consider the quantity

Oq =
n∑

i=1

n∑

j=1

aij (i − j)2. (8)
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Setting aij = an+1−i,j for i ∈ {1,2, . . . , k − 1} in (8) we obtain, using (3),

k−1∑

i=1

n∑

j=1

aij

[
2(i − k)2 + 2(j − k)2] +

n∑

j=1

akj (j − k)2

which is equal to

2
k−1∑

i=1

n∑

j=1

aij (i − k)2 + 2
k−1∑

i=1

n∑

j=1

aij (j − k)2 +
n∑

j=1

akj (j − k)2. (9)

Since

2
k−1∑

i=1

n∑

j=1

aij (i − k)2 = 2
k−1∑

i=1

(i − k)2
n∑

j=1

aij = 2
k−1∑

i=1

(i − k)2pi

and

2
k−1∑

i=1

n∑

j=1

aij (j − k)2 +
n∑

j=1

akj (j − k)2 =
n∑

j=1

(
(j − k)2

[
2

k−1∑

i=1

aij + akj

])

=
n∑

j=1

(j − k)2qj

it follows that the quantity in (9) is equal to Eq in (7). This completes the proof. �

Example 4. To illustrate Theorem 2 we consider the following two 3 × 3 tables:

1 15 1 17
3 0 3 6
2 3 2 7

6 18 6 30

O = 0.100
κ = −0.250

κq = 0.000
κ� = −0.136

1 1 1 3
3 17 3 23
2 0 2 4

6 18 6 30

O = 0.667
κ = 0.324

κq = 0.000
κ� = 0.198

Since the first and third columns are equal in both tables, Theorems 1 and 2 apply. In the first
table there are a few agreements. In contrast, the second table contains a few disagreements but
many agreements on the middle category. We would expect a higher value of κq for the second
table. However, κq = 0 for both tables. In contrast, the values of the linearly weighted kappas
are, respectively, κ� = −0.136 and κ� = 0.198. The κ� value does reflect the expected pattern.

Example 5. As a second illustration of Theorem 2 we consider the following two 5 × 5 tables:

0 6 4 3 0 13
3 0 4 0 1 8
4 6 0 5 3 18
3 0 4 0 1 8
0 6 4 3 0 13

10 18 16 11 5 60

O = 0.000
κ = −0.248

κq = 0.000
κ� = −0.126

2 1 0 1 3 7
0 3 5 4 0 12
0 0 22 0 0 22
0 3 5 4 0 12
2 1 0 1 3 7

4 8 32 10 6 60

O = 0.567
κ = 0.402

κq = 0.000
κ� = 0.256

Since in both tables the first and fifth rows are equal, and the second and fourth rows are also
equal, Theorems 1 and 2 apply. In the first table there are no agreements. In contrast, the second
table contains a few disagreements but many agreements on the middle category. We would
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expect a higher value of κq for the second table. However, κq = 0 for both tables. In contrast,
the values of the linearly weighted kappas are, respectively, κ� = −0.126 and κ� = 0.256. The
κ� value does reflect the expected difference in agreement.

4. Discussion

The quadratically weighted kappa is the version of weighted kappa that is most commonly
used for summarizing interrater agreement on an ordinal scale (Maclure & Willett, 1987; Graham
& Jackson, 1993). In this paper we presented several results that illustrate situations where the
quadratically weighted kappa fails as a measure of agreement. For agreement tables with an
odd number of categories n, it was shown that if one of the raters uses the same base rates for
categories 1 and n, 2 and n − 1, and so on, then the value of quadratically weighted kappa does
not depend on the value of the center cell of the agreement table (Theorem 1). Since the center
cell reflects the exact agreement of the raters on the middle category of the scale, we would expect
instead that the cells value makes an important contribution to the κq value. Various hypothetical
examples were presented to illustrate that the quadratically weighted kappa cannot discriminate
between agreement tables that have very different values of exact agreement. The examples also
illustrate that the linearly weighted kappa (Cicchetti & Allison, 1971; Vanbelle & Albert, 2009b;
Warrens, 2011b, 2012b) consistently reflects the expected degree of agreement. It is therefore
recommended that the linearly weighted kappa instead of the quadratically weighted kappa is
used if one wants to report a single index of agreement for an ordinal scale. Alternatively, one
can use loglinear models for modeling agreement (Tanner & Young, 1985; Agresti 1988, 2010).
See Becker (1989) and Graham and Jackson (1993) for applications of these loglinear models to
ordinal scale data.
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